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Sounds are processed by the ear and central auditory pathway.
These processing steps are biologically complex, and many aspects
of the transformation from sound waveforms to cortical response
remain unclear. To understand this transformation, we combined
models of the auditory periphery with various encoding models to
predict auditory cortical responses to natural sounds. The cochlear
models ranged from detailed biophysical simulations of the
cochlea and auditory nerve to simple spectrogram-like approxima-
tions of the information processing in these structures. For three
different stimulus sets, we tested the capacity of these models to
predict the time course of single-unit neural responses recorded in
ferret primary auditory cortex. We found that simple models
based on a log-spaced spectrogram with approximately logarith-
mic compression perform similarly to the best-performing bio-
physically detailed models of the auditory periphery, and more
consistently well over diverse natural and synthetic sounds. Fur-
thermore, we demonstrated that including approximations of the
three categories of auditory nerve fiber in these simple models can
substantially improve prediction, particularly when combined with
a network encoding model. Our findings imply that the properties
of the auditory periphery and central pathway may together re-
sult in a simpler than expected functional transformation from ear
to cortex. Thus, much of the detailed biological complexity seen in
the auditory periphery does not appear to be important for un-
derstanding the cortical representation of sound.

encoding models of neural responses | models of the auditory periphery |
auditory cortex | predicting responses to natural sounds | Marr’s levels of
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Sensory systems, from the sense organs up through the neural
pathway, are typically very complex, comprising many dif-

ferent structures and cell types that often interact in a nonlinear
fashion. The complexity of these dynamic systems can make
understanding their computations challenging. However, much
of this physiological complexity may reflect biological constraints
or come into play only under unusual conditions. Consequently,
it could be that the signal transformations that they commonly
compute are substantially simpler than their physical imple-
mentations (1). Taking the auditory system as an example, we
aimed to empirically determine the computational transforma-
tion of auditory signals through the ear to the cortex. To un-
derstand this transformation, we appended various models of the
auditory periphery to neural encoding models to predict auditory
cortical responses to diverse sounds. We used both synthetic and
natural sounds, as the latter are central to the normal function of
the auditory pathway.
Various models of the auditory periphery have been devel-

oped and refined (2–11) to account for experimental observa-
tions of cochlear and auditory nerve properties in different
species and for human psychophysical data. Some models are
biologically detailed and accurately capture particular response
properties of the auditory nerve (6, 11–16), while others are
abstracted approximations of the signal transformation in the
auditory periphery (17–19). Some have been used to provide
inputs for models of auditory neurons (17–21), to generate

perceptual models (22), and in machine processing of sounds (2,
23). However, few attempts (24) have been made to determine
which cochlear models best describe the computational impact
of the auditory periphery on neural responses in mammalian
auditory cortex, although more progress has been made in the
avian auditory system (25). The models that best explain par-
ticular physiological characteristics of the auditory periphery
may differ from the ones that best explain the impact of auditory
nerve activity on cortical responses to natural sounds. This is
because neuronal responses are transformed through the central
auditory pathway to the cortex, and the periphery may operate
differently with natural sounds.
Here we considered a range of existing biologically detailed

models of the auditory periphery and adapted them to provide
input for a number of encoding models of cortical responses. We
also constructed a variety of simple spectrogram-based models,
including one accounting for the different types of auditory nerve
fiber. Surprisingly, we found that the responses of neurons in the
primary auditory cortex (A1) in ferrets can be explained equally
well using the simple spectrogram-based cochlear models as
when more complex biologically detailed cochlear models are
used. Furthermore, the simple models explain the cortical re-
sponses more consistently well over different sound types and
anesthetic states. Hence, much of the complexity present in au-
ditory peripheral processing may not substantially impact cortical
responses. This suggests that the intricate complexity of the co-
chlea and the central auditory pathway together results in a
simpler than expected transformation of auditory inputs from ear
to cortex.
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Results
Generating Cochleagrams Using Cochlear Models. In this study, we
consider two broad classes of cochlear models. The first class is
based on cochlear filterbanks and has somewhat more detailed
biological underpinnings than the second class. We consider
several models of this first class, which we refer to here as the
Wang Shamma Ru (WSR) model (3–5), the Lyon model (2, 10),
the Bruce Erfani Zilany (BEZ) (14, 15, 26) model, and the
Meddis Sumner Steadman (MSS) model (6, 7, 11, 13, 16). These
models vary substantially in their filterbanks and compression
functions (see SI Appendix, Methods for details). The WSR
model has logarithmically spaced filters, followed by nonlinear
compression, lateral inhibition, and leaky integration (27). The
Lyon model has a near-log spacing of frequency channels that
becomes more linear near the low frequencies. The frequency
decomposition is accompanied by an adaptive-gain control
mechanism that acts as the compression function (2, 10). The
BEZ model includes multiple detailed stages of signal transfor-
mation to mimic various stages of the processing by the ear and
the auditory nerve of the cat (14, 26, 28). The MSS model is
similar to the BEZ model in that it also models the processing
stages from the ear to the auditory nerve, but of a different
species, the guinea pig (6, 7) (see SI Appendix, Fig. S1 for
schematic diagrams of each cochlear model). Recent work sug-
gests the ferret peripheral auditory system is comparable to that
of other mammalian species (29), such as cats and particularly
guinea pigs (30).
The second class of models are the STFT (short-time Fourier

transform) spectrogram-based models—these models are aimed
at approximating the information processing in the auditory
periphery without modeling the detailed biological mechanisms
(17–19, 31). Implementation of these models consists of three
key components: frequency decomposition, response integration,
and compression. We constructed the spectrogram-based co-
chlear models by performing frequency decomposition using an
STFT of the sound waveform. The amplitude or power spec-
trogram was then put through a weighted summation using
overlapping triangular filters spaced on a logarithmic scale to
obtain specified numbers of frequency channels. Finally, non-
linear compression was applied. For the amplitude spectrogram-
based models, the compression functions used were a thresh-
olded log function and a log(1+(·)) function. We refer to these
models as the spec-log and spec-log1plus, respectively. For the
power spectrogram-based models, a thresholded log compres-
sion function was used either alone or together with a Hill
function; we refer to these models as the spec-power and spec-
Hill models (SI Appendix, Fig. S1).
Each cochlear model produces a characteristic cochleagram for

the same sound input. We illustrate this by presenting a range of
synthetic and natural sound inputs (Fig. 1A) to each model.
Fig. 1B shows the cochlear models’ responses to a click, pure tones
of 1 and 10 kHz, white noise, and natural sounds. Here we depict
cochleagrams with 32 frequency channels, although we studied the
impact of varying the number of channels in each model, typically
examining 2, 4, 8, 16, 32, 64, and 128 frequency channels. For a
click input, cochleagrams produced by spectrogram-based models
have sound activity tightly localized in time, but cochleagrams
produced by filterbank-based models are more temporally spread,
with the response persisting after the impulse occurred (Fig. 1B).
For pure-tone input, cochleagrams produced by all models look
similar except for the Lyon, BEZ, and MSS models, where the
cochleagram is broader in frequency content than in the other
models (Fig. 1B). For white noise, most models have responses
smoothly distributed across frequency, except for the WSR model.
Cochleagrams of natural sounds also differ between cochlear

models (Fig. 1A and SI Appendix, Fig. S2). However, two
filterbank-based models (the BEZ and MSS models) produce

similar-looking cochleagrams, as do three spectrogram-based
models (spec-log, spec-power, and spec-Hill). Overall, the
WSR model produced very different cochleagrams across a
range of stimuli (click, white noise, and natural sounds). Fur-
thermore, the maximum energy in the cochleagrams of the spec-
log1plus model is lower than other spectrogram-based models.
Compared with other models, the output of the BEZ and MSS
models looks noisier due to the stochasticity in their models of
inner hair cells, ribbon synapse vesicle release, or auditory nerve
firing. We therefore averaged across multiple repeated runs of
these models to provide cochleagrams that reduced this vari-
ability (see SI Appendix, Methods for more details). We quanti-
fied the similarity between the cochleagrams produced by each
cochlear model for natural sound inputs by calculating the cor-
relation coefficients between the cochleagrams produced by each
possible pair of cochlear models. This quantitative analysis
supports our qualitative observations on the similarities and
differences between the cochleagrams of the different models (SI
Appendix, Fig. S3).

Predicting Responses of Auditory Cortical Neurons Using Different
Cochleagram Inputs. The datasets used in this study were from
extracellular recordings of the responses to sounds of neurons in
ferret A1. We used three datasets: responses to natural sounds in
anesthetized ferrets [natural sound dataset 1; NS1 (32)], re-
sponses to dynamic random chords (DRCs) in the same anes-
thetized ferrets [DRC dataset (32)], and responses to natural
sounds in awake ferrets [natural sound dataset 2; NS2 (33)]. We
will focus first on the results with NS1, which consisted of neural
responses to a diverse selection of natural sounds (20 sound
snippets, each 5 s in duration), including human speech, animal
vocalizations, and environmental sounds (17–19). This dataset
constitutes a total of 73 single units, which were those units with
a noise ratio (34, 35) of <40 so as to exclude neurons whose
response showed little dependence on the stimulus (see SI Ap-
pendix, Methods and ref. 17 for details).
The sound pressure waveform is generally not a suitable input

to an encoding model of a neuron in A1. A better choice of input
is typically a frequency-decomposed version of the sound (20, 25,
34, 36–47) that resembles the peripheral processing in the co-
chlea. Cochlear models are often used as input to models of
responses of auditory cortical neurons (17–19, 25, 35, 48), such
as the commonly used linear–nonlinear (LN) model of neural
responses (35, 49). Hence, we use a two-stage encoding frame-
work to estimate firing-rate time series in response to natural
sounds of neurons in ferret A1. The first stage of the encoding
framework processes the sound stimuli using a cochlear model to
generate a cochleagram (Fig. 2A). The second stage estimates
the firing-rate time series as a function of the preceding coch-
leagram using an LN model (SI Appendix, Methods). An LN
model was fitted individually to each unit’s responses to 16 of the
20 sound snippets using k-fold (k = 8) cross-validation and L1
regularization (50) (the distribution of the values of the regula-
rization parameter is shown in SI Appendix, Fig. S4). Details of
the cross-validation procedure and parameter estimation have
been described previously (17) (also see SI Appendix, Methods).
We fitted an LN model for each cochlear model with a specified
number of frequency channels (2, 4, 8, 16, 32, 64, and 128).
The linear part (L) of the LN model captures the linear de-

pendence of a neuron’s firing rate on the frequency content of
the cochleagram at different time delays, namely the spec-
trotemporal receptive field (STRF) (20, 25, 34, 36–39, 41–47).
STRFs are widely used to describe the stimulus feature selec-
tivity of auditory cortical neurons. The general properties of
STRFs estimated for the same neuron using different cochlear
models were similar (Fig. 2B). All cochlear models produced
STRFs that contained excitatory and lagging inhibitory fields.
The shape of the STRFs produced by different models also
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resembled each other. The largest weight in the STRF occurred
at a comparable frequency (best frequency) and time (latency)
for all models and regardless of the number of frequency channels.
The only exceptions to this were the 2- and 4-frequency channel
models, which sometimes showed very different frequency selec-
tivity, presumably because of the very limited choice of frequency
channels (SI Appendix, Fig. S5). The ratio of inhibitory vs. excit-
atory field strength (IE score) (17, 19) was also very similar for
STRFs produced by different cochlear models, with the exceptions
of the WSR and BEZ models (SI Appendix, Fig. S5).
Although the general properties of the STRFs obtained using

different cochlear models were similar, a more detailed analysis
revealed some variability between pairs of STRFs estimated for the
same neuron using two different cochleagram models (SI Appendix,
Fig. S6 A and B). Higher correlations were observed between
STRFs estimated from the same class of cochlear models. In par-
ticular, spec-log, spec-power, and spec-Hill models produced very
similar STRFs, whereas this was less true of the spec-log1plus
model. STRFs obtained with the MSS and BEZ models were
similar to each other and, to a lesser extent, to the spec-Hill model.
Applying Gaussian blurring to account for frequency or temporal
shifts in the STRFs improves the correlations, but did not change
the overall trends in these results (SI Appendix, Fig. S6C).
The models vary in how well they match the peaks in the re-

sponses of A1 neurons. Likewise, the measured overall prediction
performance of the LN model on a held-out dataset differed be-
tween different cochlear models. As a measure of the prediction
performance, we used the normalized correlation coefficient
(CCnorm) (31) over all neurons in the dataset, where a CCnorm of
0 indicates no correlation between the neural response and the
model’s estimate and a CCnorm of 1 indicates that the model can
predict all variance in the firing rate (averaged over repeats) that
depends on the stimulus. We found that the mean CCnorm over all

neurons varied depending on the choice of cochlear model and the
number of frequency channels in the cochleagram (Fig. 3 and SI
Appendix, Table S1). We define the peak CCnorm of a model as the
highest mean CCnorm across the number of frequency channels. The
peak CCnorm was 0.462 for theWSRmodel (at 8 channels), 0.662 for
the Lyon model (at 64 channels), 0.644 for the BEZ model (at 128
channels), 0.725 for the MSS model (at 128 channels), 0.721 for the
spec-log model (at 64 channels), 0.630 for the spec-log1plus model
(at 64 channels), 0.722 for the spec-power model (at 64 channels),
and 0.726 for the spec-Hill model (at 64 channels) (Fig. 3I and SI
Appendix, Table S1). A log-spaced power spectrogram with succes-
sive log and Hill compression functions (spec-Hill) provided the best
prediction performance, with a mean CCnorm of 0.726 (SI Appendix,
Table S1). However, three of the spectrogram models, the spec-log,
spec-Hill, and spec-power, and one of the biological models, MSS,
all predicted similarly well at about 0.72 to 0.73 peak CCnorm. In
contrast, one of the spectrogram models, spec-log1plus, and three of
the biological models, WSR, Lyon, and BEZ, predicted substantially
less well, with peak CCnorm in the range of 0.45 to 0.66 (SI Appendix,
Table S1).
Selecting the best model for individual neurons supports the

findings based on the average performance of each model for all
neurons. The spec-Hill and MSS models with either 64 or 128
frequency channels provided the best prediction performance for
most neurons (SI Appendix, Fig. S7). We also compared the
predicted response obtained with the MSS model with the pre-
dicted response of the other models and found that the similarity
in peak CCnorm performance generally covaried with the simi-
larity in predicted response (SI Appendix, Fig. S8).

Multifiber Cochleagrams. We have used the word “cochleagram”

so far to refer to a time-frequency representation of the sound
stimulus, with a single output for each time and frequency. In the
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auditory system, however, afferent nerve fibers tuned to the same
frequency can have different sound-intensity thresholds and dy-
namic ranges, and three different auditory nerve fiber types have
been physiologically characterized (30, 51, 52). The three types
of fibers are low spontaneous rate (LSR) with higher threshold
and larger dynamic range, medium spontaneous rate (MSR) with
intermediate threshold and dynamic range, and high spontane-
ous rate (HSR) with lower threshold and narrower dynamic
range. To study the impact of this representation on the pre-
diction performance of modeled cortical responses, we used an
MSS model with the three different fiber types (multifiber MSS
model) as input to the LN model. We also constructed a mul-
tithreshold spec-Hill model, where each frequency channel went
through three different Hill functions with different thresholds
and dynamic ranges (SI Appendix, Methods). This produced a
cochleagram representation that assigns the changing sound
level in a single frequency channel to three separate channels,
analogous to the three fiber types in the multifiber MSS model.
When we used these models as input to the LN model of

cortical neurons, we were able to predict cortical responses to
natural sounds slightly better than the single-fiber or single-

threshold versions of the models (Fig. 4). For the NS1 dataset,
the multithreshold spec-Hill model performed better than the
multifiber MSS model for cochleagram inputs with fewer than 32
center frequencies but performed slightly worse for cochleagram
inputs with 32 or more center frequencies (Fig. 4). Detailed
values of mean CCnorm are given in SI Appendix, Table S1.

Generality of the Model Performance and Further Explorations.
While we aimed with natural sound dataset 1 to have a diverse
and representative stimulus, this does not, of course, represent
the full space of natural sounds. Moreover, our electrophysiology
data came from anesthetized animals, raising a question over
whether brain state might affect model performance. To examine
how the choice of stimulus and brain state influences the results,
we tested the performance of the models on two other datasets.
One of these (NS2) consisted of extracellular recordings from A1
of awake ferrets in response to a different set of natural sounds
(18 sound snippets, each 4 s in duration), including human
speech, animal vocalizations, music, and environmental sounds
(53). In total, 235 single units were included, which had a noise
ratio of <40. Using the same methods as for NS1, we used this
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new dataset to train and test the models’ performance (SI Ap-
pendix, Methods). For this dataset, CCnorm values were lower for
all models (Fig. 5 A and B and SI Appendix, Table S1). Consid-
ering the peak CCnorm values, we found that the same simple
spectrogram-based models (spec-log/power/Hill) remained among
the top-performing models, performing similar to the best bio-
logical models (Lyon/BEZ) (Fig. 5A), at 0.33 to 0.34 peak CCnorm.
However, the best-performing biological models were not the
same as for NS1, with the MSS model now performing poorly
compared with the Lyon and BEZ models (SI Appendix, Table
S1). These worse-performing models (spec-log1plus, MSS, and
WSR) had peak CCnorm values within the range of 0.22 to 0.32 (SI
Appendix, Table S1).
We also tested the performance of the models on a different

type of stimulus. The 73 neurons in NS1 were also played 12
DRC stimuli, which consisted of randomly constructed chords
changing every 25 ms. Using the same methods as for NS1, we
used this DRC dataset to train and test the models’ perfor-
mances (SI Appendix, Methods). We found that the same simple
spectrogram-based models (spec-log/power/Hill) remained
among the top-performing models, now joined by the spec-
log1plus model (Fig. 5 C and D and SI Appendix, Table S1).
They performed slightly better than the best biological model
(WSR) (Fig. 5C and SI Appendix, Table S1), with peak CCnorm in
the range of 0.42 to 0.45 compared with the 0.41 peak CCnorm of
the WSR model. However, the biological models changed in
which ones performed best, now with the MSS model (best for
NS1) and Lyon/BEZ models (best for NS2) no longer being
comparable to the spectrogram models, and instead the WSR
model resembling the performance of the simpler spectrogram
models. These worse-performing models (MSS, BEZ, and Lyon)
had peak CCnorm values in the range of 0.25 to 0.34 (Fig. 5C and

SI Appendix, Table S1). Thus, while the spec-log/Hill/power
models show consistently high performances for all three data-
sets, the performance of the other more biological models varies
substantially from dataset to dataset.
We found that for the NS2 and DRC datasets the multi-

threshold model outperformed the multifiber model. For the
NS2 dataset, we also found that both the multifiber model and
multithreshold model performed better than their single-fiber/
threshold equivalent models. However, for the DRC dataset,
while the multifiber model performs better than its single-fiber
equivalent (MSS) (Fig. 5B), the multithreshold model does not
perform better than its single-threshold equivalent (spec-Hill)
(Fig. 5D). Detailed values of the prediction performance metric
for all models and these two additional datasets are given in SI
Appendix, Table S1.
So far, we have reported the prediction performance of the

cochlear models when combined with an LN encoding model. To
what extent does the choice of encoding model influence the
results? We tested the prediction performance of just the linear
stage (the STRF) of the LN model and found that CCnorm values
are lower than those for the LN model. However, the perfor-
mance of the models remains largely unchanged in comparison
with one another (SI Appendix, Fig. S9). Furthermore, we tested
the performance of each cochlear model when combined with a
network receptive field (NRF) encoding model (see SI Appendix,
Methods for more details) (17, 19). This is a single hidden layer
neural network with units with sigmoid nonlinear activation
functions. The NRF model has a higher number of parameters
and is hence likely more sensitive to the amount of training data
than the LN model. To keep the parameter number low and to
save the running time, we ran these models with a limited set of
frequency channel numbers. The CCnorm values for the NRF
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model for both natural sound datasets are typically higher than for
the LN model. The NRF model values for natural sounds are
particularly high when the NRF model is combined with the
multithreshold model (Fig. 5 F, H, and I and SI Appendix, Table
S2), reaching up to 0.78 for NS1. However, the relative perfor-
mance of different cochlear models remains similar to the LN
model (Fig. 5 E–J and SI Appendix, Table S2).
For all datasets, we examined the consequence of using CCnorm,

by examining how the results looked for a different commonly
used measure, the raw correlation coefficient. The CC varies
across the different models in a very similar way to the CCnorm (SI
Appendix, Fig. S10). We also explored in more detail the conse-
quences of some of our other modeling choices, this time just for
NS1. First, there is a stochastic element to the MSS and BEZ
models. We investigated the effect of this noise in the MSS and
BEZ models on the prediction performance. For predicting cor-
tical responses, we used the MSS and BEZ response averaged
over 20 repeats to lessen the stochasticity. When we take the av-
erage of 100 or 200 repeats, the CCnorm of the MSS model is very
similar to the MSS with 20 repeats, indicating that averaging over
20 repeats is sufficient (SI Appendix, Fig. S11). The effect of re-
peats is also similar for the BEZ model (SI Appendix, Fig. S12).
Second, for model training and testing, we initially excluded onset
responses from the neural data (the first 800 ms), as is common
practice in STRF estimation (18, 19, 54). However, we have ex-
amined the consequence of including the onset responses, and we
found that including them has very little effect on the performance
of the LN models, regardless of the cochlear model used for
preprocessing (SI Appendix, Fig. S13).
We also explored what nonlinear aspects of the spectrogram

cochlear model and LN model combination are important for

good prediction of cortical neural responses. Both the cochlear
model and the LN encoding model include nonlinearities. To
examine how these two nonlinearities interact, we constructed a
spectrogram cochlear model without any compressive cochlear
nonlinearity (spec-lin) and compared its performance with the
other spectrogram models that included a compressive cochlear
nonlinearity, in the presence or absence of the LN model output
nonlinearity. Although there is some variation across nonline-
arities and stimulus sets, in general we found that the compres-
sive cochlear nonlinearity and the output nonlinearity
contributed to prediction partially independently. When a model
had both nonlinearities together, it typically predicted better
than just one nonlinearity on its own, but a compressive cochlear
nonlinearity tended to contribute more than the output nonlin-
earity (SI Appendix, Fig. S14).
Finally, we have extended our analysis beyond the average

CCnorm for a whole dataset, by exploring how the predictive ca-
pacity of the model fits depends on different features of the
neurons or stimuli. To display the relative performance of indi-
vidual neurons, scatterplots of the CCnorm of every neuron for
each model, plotted against the MSS model, are given for all three
datasets in SI Appendix, Fig. S15. Neurons vary in their noise ratio
and, for the natural sounds, CCnorm showed little dependence on
noise ratio, whereas for the DRC stimuli, noisy neurons tended to
have lower CCnorm values (SI Appendix, Fig. S16). We also ex-
amined how CCnorm depended on the neuron’s best frequency and
IE score (17, 19). No strong relationships were apparent (SI Ap-
pendix, Figs. S17 and S18). When we examined the dependence of
CCnorm on latency, it did appear that longer-latency neurons had
lower CCnorm values (SI Appendix, Fig. S19). This is consistent
with them perhaps having additional nonlinearities due to re-
ceiving stronger inputs from higher cortical areas, as suggested by
their long latency. We also explored how well neural responses
were predicted for the four stimulus types in the test set of NS1:
ferret vocalizations, other animal sounds, speech, and environ-
mental sounds. The spec-log/power/Hill models and the MSS
model remained consistently among the top-performing models
for each stimulus type, indicating that the robustness of the spec-
log/power/Hill models is not driven by a subset of stimuli (SI
Appendix, Fig. S20). Finally, to explore which aspects of the neural
response are better predicted by the different cochlear models, we
examined how the mean squared error (MSE) of the model’s
estimate of the cortical response depended on the recorded spike
probability (SI Appendix, Fig. S21). We found that models that
performed well tended to have lower MSE during the high spike
probability times as compared with models that performed less
well, suggesting that predicting peaks in high spike activity accu-
rately is a factor in determining model performance.

Discussion
In this study, we aimed to uncover the computational transfor-
mation of the auditory signal from the ear to the cortex. To do
this, we investigated and developed different models of the audi-
tory periphery, and assessed their capacity to provide the input to
encoding models of the responses of auditory cortical neurons to a
range of sounds, including natural sounds. Surprisingly, we found
that the only models that consistently predicted the responses of
A1 neurons across datasets, stimulus type, and brain state were the
simple models that were based on little more than a spectrogram
and some compression (the models spec-log, spec-power, and
spec-Hill, which all performed similarly). Likewise, a simple
spectrogram-based model that approximated the three fiber types
of the auditory nerve (the multithreshold model) tended to pro-
duce better predictions of the neural responses than a complex
model with extensive biological detail and the three fiber types.
These findings hold when the models were used as input to dif-
ferent encoding models [linear, linear–nonlinear, and network
receptive fields (17, 19)], emphasizing their robustness. These
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findings suggest that the functional transformation from the ear to
the auditory cortex might be simpler than expected and that many
of the details of the mechanical and neural properties of the ear,
and the tuning properties of the auditory nerve and brainstem,
may be of limited relevance to their impact on cortex. This ex-
emplifies the distinctions made by Marr and Poggio (1) between
the computational and algorithmic levels of analysis, which in this
case may be surprisingly simple, and the implementation level,
which is very complex.
The observed changes in encoding model prediction perfor-

mance with different cochlear models were substantial in size,
similar to those resulting from inclusion of features such as gain
control (35) and network structure (17, 19) in encoding models
of cortical neurons. The choice of cochlear model is therefore
likely to be an important factor in accounting for differences in
prediction performance of similar encoding models reported by
different groups (18, 20, 48). Furthermore, the addition of
multiple fiber types/thresholds can produce improvements in the
performance of the model. Additional improvements occur when
multiple fiber types/thresholds were used in conjunction with
network structure to predict the responses of NS1, with predic-
tion performance reaching a remarkably high CCnorm of 0.78
(highest achieved so far for this dataset, compared with refs.
17–19) for the multithreshold model. Nonlinear features often
do not improve prediction independently. However, the NRF
and multithreshold nonlinearities appear to be relatively inde-
pendent, both contributing to prediction when applied together.
Similarly, with the single-threshold spectrogram models, the

cochlear model compression acts relatively independent of the
LN model output nonlinearity.
One reason why the spectrogram models performed both well

and consistently across stimulus types may be that the biological
models fail to accurately represent the processing that takes place
in the mammalian auditory periphery generally or the ferret au-
ditory periphery specifically. The WSR and Lyon models are
based on the broad results of animal experiments and designed to
match certain human psychophysical percepts. The MSS and BEZ
models are derived from detailed guinea pig data and cat data,
respectively (6, 7, 11, 12), and verified with auditory nerve re-
sponses to simple stimuli. Although there are relatively few
physiological studies of the ferret peripheral auditory system, es-
timates of cochlear frequency selectivity in ferrets (29, 30) are
comparable to those made for other mammalian species, notably
guinea pigs and cats. Recent work suggests that frequency selec-
tivity of ferrets more closely resembles that of guinea pigs than
cats (30). Hence, one might expect the MSS model to perform
best, but this is only the case for NS1, not NS2 or the DRC
dataset. The biological models will have had their many com-
plexities adjusted to account for physiological or psychophysical
phenomena based on simple stimuli. Hence, it may be that each
model only predicts cortical responses well for stimuli containing
features around which the model was constructed. Our simple
spectrogram models, in contrast, are not specialized for capturing
particular stimulus features. This perhaps renders the simple
spectrogram models more representative of the transformation
performed by the periphery across a broad span of sounds, in-
cluding natural sounds.
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Fig. 5. Performance of different cochlear models across datasets and encoding models. (A and B) Mean CCnorm between the LN encoding model prediction
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Another possible reason why the spectrogram models perform
better than the biological models has to do with the fact that the
input to the cortex does not come directly from the auditory
nerve. Considerable processing takes place along the auditory
pathway, with neurons at each stage being increasingly low-pass
to fine-structure (55–57) and amplitude modulation (58) and
becoming invariant to various features of the stimulus such as
acoustic background noise (59). This results in cortical responses
being relatively insensitive to the fine temporal structure and fast
amplitude modulation of sounds that are precisely encoded by
auditory nerve fibers (55–58). Furthermore, stimulus features
can be transformed nonlinearly into quite different representa-
tions at higher levels of the auditory pathway (58). This pro-
cessing may explain why the resulting transformation from ear to
cortex is better captured by our simpler spectrogram models than
by the cochlear models with more extensive detail of auditory
nerve responses.
It is important to consider a few caveats for our results. The

dependence of model predictions on stimulus set (18, 20, 60) and
encoding model (24, 61) is well-recognized. We have shown the
robustness of our simple cochlear models over three datasets
that differ in stimulus type (natural sounds and DRCs) and brain
state (awake and anesthetized), and using three different
encoding models (L, LN, and NRF). However, other factors,
such as spatial hearing cues, were not included, and reverbera-
tion, background noise, and sound mixtures were only present to
a limited extent. Furthermore, a proportion of the stimulus-
dependent neural response in A1 could not be explained by
any of the models. This is particularly the case for NS2, perhaps
due to increased nonlinearity in the awake nervous system (62),
and for the dynamic random chords, perhaps due to more
spectral detail. This all implies that while our simple models
capture much of the transformation from ear to cortex, a more
accurate approximation of the transformation, and one that
applies more widely, may be more complex. Investigating which
aspects of auditory processing at subcortical levels of the audi-
tory pathway are relevant to models of cortical neurons can be
determined empirically by similar methods. For example, our
results suggest that the division of the auditory signal among the
three physiologically distinct categories of auditory nerve fiber is
an important detail for the ear-to-cortex transformation.
Our study is an extensive comparison focused on the capacity

of different peripheral models to capture cortical neural re-
sponse in mammals. In a pioneering earlier study in birds, Gill
et al. (25) examined how well different cochlear models pre-
dicted neural responses to conspecific birdsong and modulation-
limited noise in the avian midbrain and the primary and sec-
ondary auditory forebrain, which are considered to be the avian
homolog of mammalian A1 (63). They found that time-
frequency scale and whether logarithmic or linear frequency
spacing of filters was used had limited impact, and that the op-
timal values in the models were stimulus-dependent. The time-
frequency scale relates to the number of frequency channels
(although it also relates to time resolution, complicating mat-
ters). Over an equivalent range of frequency channels (about 20
to 120), we similarly found that the number of channels often
had limited impact on prediction and that the optimal number
depended on the stimulus and model. However, below ∼20
channels, we generally found more channels to be better. As in
our study, Gill et al. (25) also found that sublogarithmic com-
pression, linear and log(1+(·)) in our case, linear and power law
in theirs, fitted neural responses worse than logarithmic. Simi-
larly, in an investigation of linear encoding models of mamma-
lian A1 neurons (24), which also explored channel number, the
peripheral model selected used near-logarithmic compression
and 18 channels. This is consistent with our study and that of Gill
et al. (25) in showing that a model incorporating logarithmic

compression and at least ∼20 frequency channels predicts
cortical responses well.
Finally, in contrast to our study, Gill et al. (25) found that

Lyon’s model with adaptive gain control provided the best fit to
neural responses for both their stimulus types. Reasons for this
difference could be the species or stimulus sets used, or details of
our spectrogram models such as the use of triangular filters.
Gain control and other adaptive phenomena are ubiquitous
features of mammalian auditory processing (35, 37, 64–67), so
the Lyon model’s underlying transmission-line cochlear model or
the parameters of its adaptive-gain control may simply not match
well with the adaptation and other features exhibited by the
ferret auditory system. An appropriate cochlear model with
species-specific gain adaptation may further improve on our re-
sults, particularly as adding sound-level adaptation to our
spectrogram-based models improves prediction of ferret cortical
responses (18).
Relevant to our multithreshold model is a model of A1 re-

sponses that also uses multiple level-dependent input nonline-
arities (68). This input nonlinearity model transformed the sound
levels in each frequency band using a set of fixed basis functions.
The basis functions are not biologically inspired, in contrast to
our multithreshold model, and were applied to DRCs with 10
discrete sound levels, rather than natural sounds and continuous-
valued DRCs. This model predicted rodent A1 responses to
DRCs better than an STRF model, but it was not compared with
an LN model and the interaction of the model’s input nonline-
arity with an output nonlinearity was not explored. Finally, single
hidden layer artificial neural networks have been applied to
predict ferret A1 responses (19). This network model also has
features resembling multiple input nonlinearities (the hidden
unit nonlinearities), albeit with a linear transform applied first,
and this was shown to predict better than an LN model. How-
ever, as we have seen in Fig. 5, appending this network model to
our multithreshold model even further improves prediction of
A1 responses to natural sounds, indicating that the multiple
thresholds and the hidden unit nonlinearities capture different
nonlinear aspects of the ear-to-cortex signal transformation.
It is interesting to speculate on the perceptual, behavioral, and

clinical implications of our findings. Algorithms for automati-
cally estimating speech quality (and other speech characteristics)
are useful for assessing hearing aids and other auditory pros-
thetics and can also indicate what sound transformations guide
perception and action. Wirtzfeld et al. (69) found that a complex
biologically detailed cochlear model (15, 26) did not outperform
a simpler model (70) in predicting human estimates of speech
quality in noise, although the relative effectiveness of different
models in assessing speaker identity is affected by the presence
of different types of background noise (71). Similarly, a simple
cochlear model is sufficient to reproduce the task-dependent
STRF plasticity that characterizes the auditory cortex (72). If
cortical activity reflects perception and guides behavior, these
studies are consistent with our finding that a simple transfor-
mation predicts cortical responses well, and also suggests possi-
ble value in using our simple models in speech assessment and
recognition algorithms. An alternative way to investigate what
aspects of cochlear models are important for perception would
be to synthesize sound textures (22) using different cochlear
models and quantitatively assess human judgments of their
quality. Our findings also have implications for cochlear im-
plants, where electrical pulses are delivered directly to the au-
ditory nerve, and particularly brainstem, midbrain, or cortical
implants (73), by suggesting simple signal-processing strategies
to mimic the impact of the auditory periphery on the
stimulated neurons.
In summary, although extensive processing takes place in the

cochlea and the central auditory pathway (74), our results sug-
gest that the cortex receives a relatively simple functional
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transformation of sound inputs. Many of the complex properties
of peripheral auditory processing appear to have limited impact
on cortical responses, and much of that processing is captured by
a simple spectral decomposition of the input. Explaining the
remaining aspects of how cortical neurons respond to natural
sounds will likely require additional complexities to those found
in the models we examined, which can be revealed using em-
pirical computational methods such as those adopted here. It is
likely that similar principles apply to other sensory systems.

Methods
Neural responses to sound stimuli were recorded from ferret primary auditory
cortex. The sounds were put through a cochlear model which then provided
input to an encoding model. The parameters of the encoding model were
optimized to estimate the time course of the neural responses to the sounds,
and the model was then tested on how well it could predict responses to

sounds that were not used for the optimization. The average capacity of
different cochlear models to predict the neural responses via encoding
models was examined, to determine which cochlear model best captured the
impact of cochlea processing on the neural responses (see SI Appendix,
Methods for detailed methodology).

All data obtained by the authors were from experiments performed under
license from the UK Home Office and approved by the University of Oxford
Committee on Animal Care and Ethical Review.

Data and Code Availability. All study data are included in the article and SI
Appendix. All codes are available at https://github.com/monzilur/cochlear_
models.
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